MegaTevs: single-chain dual nucleases for efficient gene disruption
نویسندگان
چکیده
منابع مشابه
MegaTevs: single-chain dual nucleases for efficient gene disruption
Targeting gene disruptions in complex genomes relies on imprecise repair by the non-homologous end-joining DNA pathway, creating mutagenic insertions or deletions (indels) at the break point. DNA end-processing enzymes are often co-expressed with genome-editing nucleases to enhance the frequency of indels, as the compatible cohesive ends generated by the nucleases can be precisely repaired, lea...
متن کاملEfficient Immunoglobulin Gene Disruption and Targeted Replacement in Rabbit Using Zinc Finger Nucleases
Rabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We demonstrate that zinc finger nucleases (ZFNs) introduced into fertilized oocytes can inactivate a chosen gene by mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first gene knockout and targeted sequence replacement in...
متن کاملEfficient gene targeting in Drosophila with zinc-finger nucleases.
This report describes high-frequency germline gene targeting at two genomic loci in Drosophila melanogaster, y and ry. In the best case, nearly all induced parents produced mutant progeny; 25% of their offspring were new mutants and most of these were targeted gene replacements resulting from homologous recombination (HR) with a marked donor DNA. The procedure that generates these high frequenc...
متن کاملSingle-strand-specific nucleases.
Single-strand-specific nucleases, which act on single-stranded nucleic acids and single-stranded regions in double-stranded nucleic acids, are multifunctional enzymes and are ubiquitous in distribution. They find wide application as analytical tools in molecular biology research, although enzymes such as P1 nuclease are also used for production of flavor enhancers such as 5' IMP and 5' GMP. Bec...
متن کاملEfficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases.
The frog Xenopus, an important research organism in cell and developmental biology, currently lacks tools for targeted mutagenesis. Here, we address this problem by genome editing with zinc-finger nucleases (ZFNs). ZFNs directed against an eGFP transgene in Xenopus tropicalis induced mutations consistent with nonhomologous end joining at the target site, resulting in mosaic loss of the fluoresc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 2014
ISSN: 0305-1048,1362-4962
DOI: 10.1093/nar/gku573